China National Building Material Industry Hardware And Plumbing Equipment Quality Supervision And Test Center 4 Dahongmen West Road, Fengtai District, Bejing, China

Test Report

Test Report No. GTDM1209012

AHM126 aluminum awning window with fixed

Client: YINTEC

24- September-2012

Prepared by	Gramyarling
Verified by	Denggnish;
Approved by:	mein ?

China National Accreditation Service for Conformity Assessment, accredits this Laboratory. The tests reported herein have been performed in accordance with its scope of accreditation Accreditation No.L1449

Email:

zhiliang1612@sohu.com

Telephone:

+86-10-81568966, 67235600

Website:

http://www.wjzj.org.cn

China National Building Material Industry Hardware And Plumbing Equipment Quality Supervision And Test Center

TESTS: The specimen was submitted for testing in accordance with AS4420.0-6 1996 Windows – Methods of test, and evaluation in accordance with AS2047 1999 Windows in buildings - Selection and installation.

Manufacturer: Guangya Curtain Wall &Window Door System Engineering Co., Ltd.

Address: Ma An Gang Industrial Zone, Guanyao Town ,Nanhai District, Foshan City, Guangdong Province,

Specimen model information: 1600W×2700H AHM126 Aluminum Awning Window manufactured by Guangya Curtain Wall &Window Door System Engineering Co.,Ltd.

NOTE: This laboratory has not selected the test specimens. The reported test results apply only to the tested specimen and may be not applicable to the other specimens of the same product.

Information:

Test Item	Tested "✓"	Rating	Units
Structural Deflection	1	2100	Pa
Operating force	- "	N/A	N
Air Infiltration	84 0	75/150	Pa
Water Penetration Resistance	10	300	Pa
Ultimate Strength	1	5000	Pa

Test Equipments: The test equipment and methods list in the above test comply with the requirements of AS4420.1-6

RESULTS:

The results for compliance with the specification are shown in the following pages under the relevant clause numbers.

Information:

	Name of Sa	mple	aluminum awning window with fixed	Brand	产业 产
	Туре		126set	Model (mm)	1600×2700×126
	Glass Varie	eties	Flat Glass	span (mm)	2575
Gla	ass Inlaid M	aterials	Sealant	Seal between sections	Rubber
		W- W	W (mm)	H (mm)	Area (m ²)
	Window		1600	2700	4.32
D	P	No.	W (mm)	H (mm)	Area (m ²)
	Sash	1 5	672	920	0.62
		-		-	
The M	lauimum Ci	A Signal	W (mm)	H (mm)	Thick (mm)
The IV	laximum Siz	ze of Glass	727	2540	112

1. Deflection test

Reference:

AS 2047—1999 Windows in buildings-Selection and installation AS 4420.2—1996 Windows — Methods of test

Method 2: Deflection test

Test procedure: According to AS 4420.2-1996, the specimen should be installed into the testing chamber, and the displacement sensor should be installed in accordance with graph1. Making it preloaded first, and then smoothly increasing (or decreasing) the pressure, until the test pressure is reached.

Graph 1 the installation position of displacement sensor (inside view)

Graph 2 the increasing pressure sequence of deflection test

Results of Deflection Test:

184	- 84-	Span (mm) :	2575					
Allowa	able Deflection a	it 1/150 (mm) :	17.17	PP				
Allowa	able Deflection a	at 1/180 (mm) :	14.31					
Allowa	able Deflection a	at 1/250 (mm):	10.30		ep7775 - ep77	TS 287775	Age of the last of	Jeepins.
Test Pressure	Displacement	Displacement	Displacement	Deflection	Deflection	Assessment	Assessment	Assessment
(Pa)	Point A	Point B (D _m)	Point C	$d = D_m - ((A+C)/2)$	Span	at 1/150	at 1/180	at 1/250
> 2	> 100	100	D D		Ratio	2 122	70	100 m
500		70	\$775° \$7	373	g7) g7	5 45775	47	200
700		-	- 1		- "	2	47	
1,000	14	84	M. W.		Ph Ph.		2	Phi-
1,500	2 12	34-2	灰). 灰	PP	P- K	PE	82->	7
2,100	1.18	5.05	1.95	3.49	738.88	pass	pass	pass
3,000	5 473	477	5770 SZ	D 100	877 ST	3		97
5,000		V -	- /	77		97-	7.	
-500	1	0,	F. #		E E.	1	6-	Pi-
-700	PAP	7	12. 凝	PP	下,	7 30	#20°	和一
-1,000	2 112	100 m	100 · 100		E>- 2Z	2	20	20
-1,500	D 800	700	77 T	D #D	F77 - F7	5 50	577	et 5
-2,100	2.75	5.89	1.86	3.59	718.27	pass	pass	pass
-3,000	100	0-	F #	W-	4.5	1 11:	W-	P.
-5,000	2 72	\$2.2E	P. Z	P #22	10. T	7 120	那>	第二

2. Operating force test

Reference:

AS 2047-1999 Windows in buildings-Selection and installation

AS 4420.3-1996 Windows -Methods of test

Method 3: Operating force test

Test procedure: According to *AS 4420.3-1996*, the specimen should be installed into the test chamber. The window lock should be released without opening the window. A static force should be exerted without impact on the handle or control device in the opening direction and it is measured by dynamometer, which is initial operating force. Another force to keep the window moving is sustaining force.

7 7		Results of Test								
type	Allowable value	90	Area	Opening f	orce (N)	Closing fo	orce (N)	2 5		
	DDD	Sash	(m ²)	To intiate movement	To sustain movement	To intiate movement	To sustain movement	Results		
	To intiate movement≤180 To sustain movement≤110	77	10	12. j	> .p	<i>p</i>	772	D-17		
Sliding doors		2	7	#P. #	> #P	170°	#2. #	〇 - 凝		
Sliding	Sliding To intiate	1	W?	1900年	2 11	# -	F. #	つ.源		
Window (horizontal) movement≤110 To sustain movement≤90	2	#!	2-1	1	7	12. 11	7.A			
Sliding Window (vertical) To intiate movement≤200 To sustain movement≤160	1	W.	R. R	J.	W.	# . #	7.7			
	2	8	W A	1	P	0,- 0.	- 15			

Results:

NIL

3. Air infiltration test

Reference:

AS 2047-1999 Windows in buildings-Selection and installation

AS 4420.4-1996 Windows -Methods of test

Method 4: Air infiltration test

Test procedure: According to AS 4420.4-1996, the specimen should be place into the test chamber, smoothly increasing (decreasing) the pressure in accordance with Graph 2. The air infiltration capacity at each differential pressure should be measured and carried out a regression calculation. The air infiltration capacities under pressure 75 Pa and 150 Pa are obtained, which are divided by the window area to get the air infiltration capacities per unit area under all differential pressure.

China National Building Material Industry Hardware And Plumbing Equipment Quality Supervision And Test Center

Graph 3

Air temperature(°C)	23	barometric pressu	100.7	
Building / Window type	Pressure direction	Maximum air infitration L/(m²·s)		results n ² ·s)
	+	# # #	0.5	Pass
PP	D 10	75Pa: ≤1.0	0.9	Pass
Airconditioned	0+0	7000 1100	0.7	Pass
	\$7.5 \$7.5	150Pa: ≤1.6	1,4	Pass
	+	75Pa: ≤5.0	0.5	Pass
Nor -airconditioned		150Pa: ≤8.0	0.7	Pass
Louvre window	D+D	75Pa: ≤20.0	10.10	#P-#
Adjustable louvers, Residential and commercial buildings	70 to	75Pa: ≤20.0	10.10	D. E
	+	150Pa: ≤32.0	- "	1

4. Water penetration resistance test Reference:

AS 2047—1999 Windows in buildings-Selection and installation AS 4420.5—1996 Windows—Methods of test Method 5: Water penetration resistance test

Test procedure: According to the test method record in the AS 4420.5-1996, the specimen should be place into the test chamber. Spray water on the chamber's surface, and the working water jet capacity is maintained at 0.05L/ m²·s. Firstly, spraying water for 5 minutes under zero differential pressure condition, and then spray water for 15 minutes under test pressure of 300Pa,there should be no existence of leakage.

Pressure (Pa)	results
150	
200	0 80
300	Pass
400	-
450	- Phane

Graph of leakage location

5. Ultimate strength test

Reference:

AS 2047-1999 Windows in buildings-Selection and installation

AS 4420.6-1996 Windows - Methods of test

Method 6: Ultimate strength test

Test procedure: According to AS 4420.6-1996, the specimen should be place into the test chamber.

The test sample shall be subjected to a smoothly increasing differential Pressure . performed individually in both positive and negative directions. the time taken to reach the structural test pressure shall be approximately 1 minute. Test pressure shall be maintained on the test sample for a period of 10 s.

If the sponsor requires an incremental test, each incremental length of 10 seconds is need an independent test.

	NO.		Test	results		AP A	三. 海	
Pressure (Pa)	700	1000	1500	2300	3300	5000	6000	
Pressure	20	10.20	200	10- 10		pass	DIE	
Negative pressure	12	p. p	20	W> W	10	pass		
result	The test unit satisfied the requirement of AS 2047.							

Appendix 1: Specimen Drawing

This laboratory confirms that the above diagram accurately represents the sample tested in this report.